CSE 312
 Foundations of Computing II

Lecture 6: Conditional Probability and Bayes Theorem

wPAUL G. ALLEN SCHOOL OF COMPUTER SCIENCE \& ENGINEERING

Rachel Lin, Hunter Schafer

Slide Credit: Based on Stefano Tessaro's slides for 312 19au
incorporating ideas from Alex Tsun's and Anna Karlin's slides for 312 20su and 20au

Announcement

- PSet 1 due tonight
- Submit both coding and written portion on Gradescope.
- If working in a pair, remember to add your partner to your submissions!
- PSet 2 posted on website, due next Thursday
- No class or OH on Monday 1/18 (MLK Day)

Review Probability

Definition. A sample space Ω is the set of all possible outcomes of an experiment.

Definition. An event $E \subseteq \Omega$ is a subset of possible outcomes.

Examples:

- Single coin flip: $\Omega=\{H, T\}$
- Two coin flips: $\Omega=\{H H, H T, T H, T T\}$
- Roll of a die: $\Omega=\{1,2,3,4,5,6\}$

Examples:

- Getting at least one head in two coin flips: $E=\{H H, H T, T H\}$
- Rolling an even number on a die :

$$
E=\{2,4,6\}
$$

Review Axioms of Probability

Let Ω denote the sample space and $E, F \subseteq \Omega$ be events. Note this is more general to any probability space (not just uniform)

Axiom 1 (Non-negativity): $P(E) \geq 0$
Axiom 2 (Normalization): $P(\Omega)=1$
Axiom 3 (Countable Additivity): If E and F are mutually exclusive,
then $P(E \cup F)=P(E)+P(F)$

```
Corollary 1 (Complementation): \(P\left(E^{c}\right)=1-P(E)\)
Corollary 2 (Monotonicity): If \(E \subseteq F, P(E) \leq P(F)\)
Corollary 3 (Inclusion-Exclusion): \(P(E \cup F)=P(E)+P(F)-P(E \cap F)\)
```


Agenda

- Conditional Probability
- Bayes Theorem
- Law of Total Probability
- Bayes Theorem + Law of Total Probability
- More Examples

Conditional Probability (Idea)

What's the probability that someone likes ice cream given they like donuts?

Conditional Probability

Definition. The conditional probability of event A given an event B happened (assuming $P(B) \neq 0$) is

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}
$$

An equivalent and useful formula is

$$
P(A \cap B)=P(A \mid B) P(B)
$$

Conditional Probability Examples

In the popular, social video game Among Us, you are either a crewmate or an imposter. This game, you are an imposter. What is the probability you will win the game given that you are imposter?

W = You win a game
I = You are the imposter in a game

$$
P(W \mid I)=\frac{P(W \cap I)}{P(I)}
$$

Reversing Conditional Probability

Question: Does $P(A \mid B)=P(B \mid A)$?

No!

- Let A be the event you are wet
- Let B be the event you are swimming

$$
\begin{aligned}
& P(A \mid B)=1 \\
& P(B \mid A) \neq 1
\end{aligned}
$$

Example with Conditional Probability

Toss a red die and a blue die (both 6 sided and all outcomes equally likely). What is $P(B)$? What is $P(B \mid A)$?

Gambler's fallacy

Assume we toss 51 fair coins.
Assume we have seen $\mathbf{5 0}$ coins, and they are all "tails".
What are the odds the $\mathbf{5 1}^{\text {st }}$ coin is "heads"?
$\mathcal{A}=$ first 50 coins are "tails"
$B=$ first 50 coins are "tails", $51^{\text {st }}$ coin is "heads"
$51^{\text {st }}$ coin is independent of
$\mathbb{P}(\mathcal{B} \mid \mathcal{A})=\frac{\mathbb{P}(\mathcal{A} \cap \mathcal{B})}{\mathbb{P}(\mathcal{A})}=\frac{1 / 2^{51}}{2 / 2^{51}}=\frac{1}{2}$ outcomes of first 50 tosses!

Gambler's fallacy = Feels like it's time for " heads"!?

Agenda

- Conditional Probability
- Bayes Theorem
- Law of Total Probability
- Bayes Theorem + Law of Total Probability
- More Examples

Bayes Theorem

A formula to let us "reverse" the conditional.

Theorem. (Bayes Rule) For events A and B , where $P(A), P(B)>0$,

$$
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}
$$

$P(A)$ is called the prior (our belief without knowing anything)
$P(A \mid B)$ is called the posterior (our belief after learning B)

Bayes Theorem Proof

Bayes Theorem Proof

By definition of conditional probability

$$
P(A \cap B)=P(A \mid B) P(B)
$$

Swapping A, B gives

$$
P(B \cap A)=P(B \mid A) P(A)
$$

But $P(A \cap B)=P(B \cap A)$, so

$$
P(A \mid B) P(B)=P(B \mid A) P(A)
$$

Dividing both sides by $P(B)$ gives

$$
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}
$$

Our First Machine Learning Task: Spam Filtering

Subject: "FREE \$\$\$ CLICK HERE"

What is the probability this email is spam, given the subject contains "FREE"? Some useful stats:

- 10% of ham (i.e., not spam) emails contain the word "FREE" in the subject.
-70% of spam emails contain the word "FREE" in the subject.
- 80% of emails you receive are spam.

Brain Break

Doing Bayesian Data Analysis

Agenda

- Conditional Probability
- Bayes Theorem
- Law of Total Probability
- Bayes Theorem + Law of Total Probability
- More Examples

Partitions (Idea)

These events partition the sample space

1. They "cover" the whole space
2. They don't overlap

Partition

Definition. Non-empty events $E_{1}, E_{2}, \ldots, E_{n}$ partition the sample space Ω if (Exhaustive)

$$
E_{1} \cup E_{2} \cup \cdots \cup E_{n}=\bigcup_{i=1}^{n} E_{i}=\Omega
$$

(Pairwise Mutually Exclusive)

$$
\forall_{i} \forall_{i \neq j} E_{i} \cap E_{j}=\emptyset
$$

Ω

Law of Total Probability (Idea)

If we know $E_{1}, E_{2}, \ldots, E_{n}$ partition Ω, what can we say about $P(F)$

Law of Total Probability (LTP)

Definition. If events $E_{1}, E_{2}, \ldots, E_{n}$ partition the sample space Ω, then for any event F

$$
P(F)=P\left(F \cap E_{1}\right)+\ldots+P\left(F \cap E_{n}\right)=\sum_{i=1}^{n} P\left(F \cap E_{i}\right)
$$

Using the definition of conditional probability $P(F \cap E)=P(F \mid E) P(E)$ We can get the alternate form of this that show

$$
P(F)=\sum_{i=1}^{n} P\left(F \mid E_{i}\right) P\left(E_{i}\right)
$$

Another Contrived Example

Alice has two pockets:

- Left pocket: Two red balls, two green balls
- Right pocket: One red ball, two green balls.

Alice picks a random ball from a random pocket.
[Both pockets equally likely, each ball equally likely.]

Sequential Process - Non-Uniform Case

Agenda

- Conditional Probability
- Bayes Theorem
- Law of Total Probability
- Bayes Theorem + Law of Total Probability
- More Examples

Our First Machine Learning Task: Spam Filtering

Subject: "FREE \$\$\$ CLICK HERE"

What is the probability this email is spam, given the subject contains "FREE"? Some useful stats:

- 10% of ham (i.e., not spam) emails contain the word "FREE" in the subject.
-70% of spam emails contain the word "FREE" in the subject.
- 80% of emails you receive are spam.

Bayes Theorem with Law of Total Probability

Bayes Theorem with LTP: Let $E_{1}, E_{2}, \ldots, E_{n}$ be a partition of the sample space, and F and event. Then,

$$
P\left(E_{1} \mid F\right)=\frac{P\left(F \mid E_{1}\right) P\left(E_{1}\right)}{P(F)}=\frac{P\left(F \mid E_{1}\right) P\left(E_{1}\right)}{\sum_{i=1}^{n} P\left(F \mid E_{i}\right) P\left(E_{i}\right)}
$$

Simple Partition: In particular, if E is an event with non-zero probability, then

$$
P(E \mid F)=\frac{P(F \mid E) P(E)}{P(F \mid E) P(E)+P\left(F \mid E^{C}\right) P\left(E^{C}\right)}
$$

Agenda

- Conditional Probability
- Bayes Theorem
- Law of Total Probability
- Bayes Theorem + Law of Total Probability
- More Examples

Example - Zika Testing

Zika fever

OVERVIEW

A disease caused by Zika virus that's spread through mosquito bites.

Usually no or mild symptoms (rash); sometimes severe symptoms (paralysis).

During pregnancy: may cause birth defects.

Suppose you took a Zika test, and it returns "positive", what is the likelihood that you actually have the disease?

- Tests for diseases are rarely 100% accurate.

Example - Zika Testing

Suppose we know the following Zika stats

- A test is 98% effective at detecting Zika ("true positive")
- However, the test may yield a "false positive" 1% of the time
- 0.5% of the US population has Zika.

What is the probability you have Zika (event Z) if you test positive (event T).

Example - Zika Testing

Suppose we know the following Zika stats

- A test is 98% effective at detecting Zika ("true positive")
- However, the test may yield a "false positive" 1% of the time
- 0.5% of the US population has Zika.

What is the probability you have Zika (event Z) if you test positive (event T).

Suppose we had 1000 people:

- 5 have Zika and test positive
- 985 do not have Zika and test negative
- 10 do not have Zika and test positive

$$
\frac{5}{5+10}=\frac{1}{3} \approx 0.33
$$

Demo

Philosophy - Updating Beliefs

While it's not 98% that you have the disease, your beliefs changed drastically

Z = you have Zika
T = you test positive for Zika

Prior: $P(Z)$

Posterior: $\mathrm{P}(\mathrm{Z} \mid \mathrm{T})$

Example - Zika Testing

Suppose we know the following Zika stats

- A test is 98% effective at detecting Zika ("true positive")
- However, the test may yield a "false positive" 1% of the time
- 0.5% of the US population has Zika.

What is the probability you test negative (event \bar{T}) if you have Zika (event Z)?

Conditional Probability Define a Probability Space

The probability conditioned on A follows the same properties as (unconditional) probability.

Example. $\mathbb{P}\left(\mathcal{B}^{c} \mid \mathcal{A}\right)=1-\mathbb{P}(\mathcal{B} \mid \mathcal{A})$

Formally. (Ω, \mathbb{P}) is a probability space $+\mathbb{P}(\mathcal{A})>0$

